Bending Beam Fatigue Test – Update

GM Rowe

Mixture ETG Meeting, Salt Lake City April 26th 2016

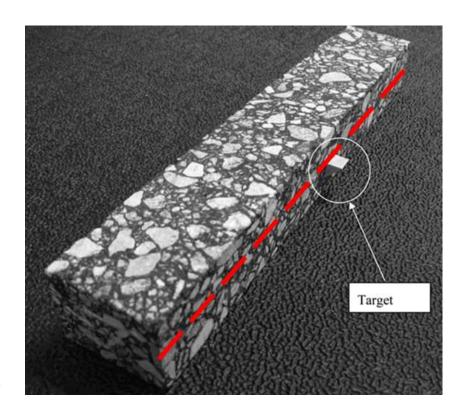
Thanks to our task group

- Last meeting (yesterday) to finalize some actions:
 - Attendees
 - Geoff Rowe
 - Bill Criqui
 - David Jones
 - Andrew Cooper
 - Kieran McGrane
- Other members not present
 - Phil Blankenship, John Harvey
- Objective to review actions and decisions made
 - agree path forward
 - 10 Items see last meeting notes

10 Items

- Wave form
- 2. LVDT reference location
- 3. Rotational and lateral translation at clamping locations
- 4. Clamping stress
- 5. Response sampling intervals and numbers
- 6. Details calculations of each reporting interval
- 7. Strain level selection for testing
- 8. Add discussion about test termination and fatigue life where Nf is desired outcome.

Run test to S.n with at least reduction of 15 % beyond failure defined as S.n peak. Currently in AASHTO and ASTM.


- 9. Add note about NMAS min and max and variability
- 10. Minimum results that must be reported

1. Wave form

- Agree that both standards would use sine curve about initial zero position
 - No haversine or versine or offset language in specification
 - Makes specification language simpler
 - Consistent with majority view on what most the majority of tests labs have been doing in the USA
 - Use of other wave forms has shown been shown as not statistically significant in recent review by UC Davis

2. LVDT reference location

- Agreed that all standards would use method that was originally proposed by SHRP A003a research
 - Target reference at mid point of beam on specimen
 - Agreement from major equipment manufactures (IPC, Cooper, James Cox & Sons)
 - Makes this issue of possibly needed two standards go away

3. Rotational and lateral translation at clamping locations

- Consider this is not an issue just check wording in ASTM and AASHTO
 - Concern had been raised on ASTM wording
 - Equipment provides for this

4. Clamping stress

- Provisional agreement on 300 N +/- 30N
 - With area of 25mm just need to check with manufactures to make sure no issue – but this will be written into both standards

5. Response sampling intervals and numbers

Agreed that following table will be written into standard

repetitions	Intervals (space equally within each range)	Cycles at each collection points included		
		in average reported		
0 to 100	1-10, then every 10 to 100	5 (except for 1-10, report individual		
		cycle)		
100 to 1000	10	5		
1000 to 10,000	40 equally spaced data points	5		
10,000 to 100,000	At least one every 1,000 repetitions	5		
100,000 to end of test	At least one every 10,000 repetitions	5		

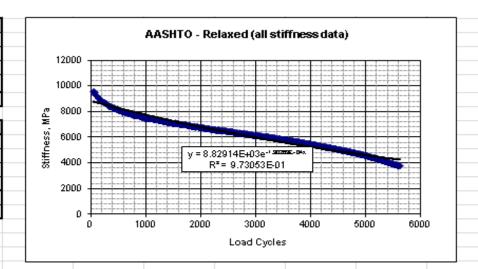
- Current manufactures already do this but provides minimum standard acceptable for data capture rate
- Needed to ensure adequate data to fully capture peak that is needed to define the failure location in the test

6. Details calculations of each reporting interval

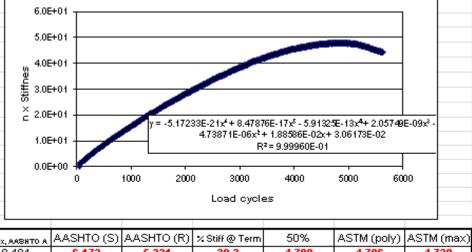
- Manufactures both noted that they have been implementing the AASHTO TP79/NCHRP 9– 29 methods
 - Asked both to check
 - Refine report value to include errors reported in TP79

Essential agreement on way forward – check will be done!

7. Strain level selection for testing


- Dave Jones will provide a guidance note on this
- Advice to user about how to start test depends upon initial stiffness estimate for beam
 - No disagreement on need for this

- 8. Add discussion about test termination and fatigue life where Nf is desired outcome.
 - Run test to S.n with at least reduction of 15 % beyond failure defined as S.n peak. Currently in AASHTO and ASTM.
 - Need to have equipment manufactures terminate test on this criteria
 - Essential agreement does depend on manufactures workload
 - User has to currently set a lower stiffness which results in longer test times
 - Agreement on use of six order poly fit with differential method - rather than having choice of procedures
 - Make same in both ASTM and AASHTO standards


8. cont.

AASHTO - relaxed - all data				
Stiffness,measured, N=50	9,570			
A	8.83E+03			
A b	-1.30E-04			
n ₁₅₀	5,321			
% of Stiffness (N=50) at Termination	39.3			

Difference in AASHTO and compared to 50%				
50% of measured stiffness	4,785			
First record below	4,790			
Point when all records below	4,790			
Average	4,790			
Percent error (AASHTO methods)	16%			
Percent error (AASHTO vs. 50%)	29%			

ASTM Method	
6-order poly fit method	
-5.17E-21	×e
8.48E-17	× ⁵
-5.91E-13	×*
2.06E-09	×3
-4.74E-06	x²
1.89E-02	×¹
dy/dx = 0 at turning point	
dy/dx	0.00
x (by POLY/SOLVER)	4,796
Max (strict definition)	22928014
x (at Max)	4,720

Specimen Ref.	S _{mix, n∈so}	S _{mix, AASHTO A}	AASHTO (S)	AASHTO (R)	% Stiff @ Term	50%	ASTM (poly)	ASTM (max)
12.5mm 64-22 600ms	9,570	8,484	6,173	5,321	39.3	4,790	4,796	4,720
Specimen Ref.	S _{mix, r=50}	S _{mix, AASHTO A}	AASHTO (S)	AASHTO (R)	% Stiff @ Term			
12.5mm 64-22 600ms	9,570	9,003	5,181	5,181	57.0			

9. Add note about NMAS min and max and variability

- Agreed use note from ASTM standard!
 - Make same note for both standards

10. Minimum results that must be reported

- Agreed to make consistent with item 5 and item 6
 - Will add errors reported but a small change to both standards

New practice

- Needed for "Use of and Interpreting Bending Beam Fatigue Results"
 - Number of results vs. confidence in result
 - Specification advice
 - Averaging results log basis not linear
 - How to make a fatigue curve
- Will be drafted by next meeting

Actions

AASHTO T321

- Geoff Rowe Need to gets edits to standard what date needed by?
- Need action by AASHTO asap!
- A few typos to fix as well!

ASTM D7460

 Bill Criqui – Need to update draft for ASTM ballot – needed by next week?

New practice

 Geoff Rowe to draft outline a key items and send to group by mid year

Goal to present at next ETG as draft - go to AASHTO end of 2016/2017

Thanks to our task group!

.... and greetings from those back home

